EE222 Midterm Examination

February 6, 2018
Name Student ID

1. (20 points) For low power operation of CMOS circuits, describe the design principle in terms of power supply voltage $V_{D D}$, voltage swing $\Delta \mathrm{V}$ at output nodes, switched capacitance $C_{s w}$ (= product of switching frequency and capacitance), and MOST's threshold voltage V_{T}.
2. (20 points) Let us consider a T shape metal interconnect configuration of a uniform width $1 \mu \mathrm{~m}$ that connects three gates. Its horizontal length from point A to point B is $1000 \mu \mathrm{~m}$ and its vertical length starting at the center of the horizontal line is also 1000 $\mu \mathrm{m}$ long ending at point C .
Assuming that the line resistance is $0.1 \Omega /$ square, and line capacitance including the fringing field effect is $0.066 \mathrm{fF} / \mu \mathrm{m}^{2}$, find an Elmore delay from the top left corner point A to the bottom most point C. Use a distributed L-type RC model for every 250 $\mu \mathrm{m}$.

3. (30 points) A super buffer can be used to drive a large load capacitance $C_{\text {load }}$ instead of abruptly enlarging the driving gate's transistor sizes. When the gate capacitance of an intrinsic inverter is $C_{g}=0.166 \mathrm{fF}$ and $C_{\text {load }}=3.655 \mathrm{pF}$,
find a minimum delay in picoseconds. Here the intrinsic inverter's delay τ_{o} is calculated from a 11-stage ring oscillator that has a frequency of 90.9 GHz .
(Hint: Find τ_{o} from the oscillation frequency as $\mathrm{f}=1 /\left(2 X 11 \tau_{o}\right)$. Also $C_{\text {load }} / C_{g}=e^{10}$ with $\mathrm{e}=2.718$.)
4. after wordline (gate voltage) is switched to $\mathbf{2} \boldsymbol{V}_{\boldsymbol{D D}}$. (30 points) A dynamic random access memory (DRAM) cell is connected to its bitline (BL) with a total capacitance of 450 fF . The physical dimensions of the DRAM cell's NMOS transistor is shown below. The current driving power $\boldsymbol{I}_{\boldsymbol{D}}$ is described below. Let us assume that $V_{D D}=2 \mathrm{~V}$ and $V_{T n}=0.5 \mathrm{~V}, C_{\text {storage }}=50 \mathrm{fF}$. Find the time it takes for BL , which was precharged to $\frac{V_{D D}}{2}$ by a precharge pulse while $C_{\text {storage }}$ was charged to $V_{D D}$, to reach the beginning of a steady state value after the wordline (WL) signal which is the gate voltage of NMOS transistor is switched to $2 V_{D D}$.

For simple calculation, assume that the parasitic drain capacitance can be neglected, and WL is driven with a high voltage $2 V_{D D}$ such that the NMOST is in its linear region, i.e.,
$I_{D S}=k_{n}{ }^{\prime} W_{n} / L_{n} \frac{1}{1+\frac{V_{D S}}{E_{C} L_{n}}}\left(\left(V_{G S}-V_{T n}\right) V_{D S}-1 / 2 V_{D S}^{2}\right)$,
where $E_{C}=10^{5} \mathrm{~V} / \mathrm{cm}, L_{n}=0.05 \mu \mathrm{~m}$. The average value of $I_{D S}=\frac{1}{2}\left(I_{D S}\right.$ for $V_{D S}=2 \mathrm{~V}+$ $I_{D S}$ for $V_{D S}=$ steady state value) can be used for calculation of the delay.

(for problem 4 continuation)

