EE222 Midterm Examination

February 6, 2018

Name______Student ID______

1. (20 points) For low power operation of CMOS circuits, **describe the design principle** in terms of power supply voltage V_{DD} , voltage swing ΔV at output nodes, switched capacitance C_{sw} (= product of switching frequency and capacitance), and MOST's threshold voltage V_T .

2. (20 points) Let us consider a T shape metal interconnect configuration of a uniform width 1 μ m that connects three gates. Its horizontal length from point A to point B is 1000 μ m and its vertical length starting at the center of the horizontal line is also 1000 μ m long ending at point C.

Assuming that the line resistance is 0.1 Ω /square, and line capacitance including the fringing field effect is 0.066 fF/ μ m², find an Elmore delay from the top left corner point A to the bottom most point C. Use a distributed L-type RC model for every 250 μ m.

3. (30 points) A super buffer can be used to drive a large load capacitance C_{load} instead of abruptly enlarging the driving gate's transistor sizes. When the gate capacitance of an intrinsic inverter is $C_g = 0.166$ fF and $C_{load} = 3.655$ pF,

find a minimum delay in picoseconds. Here the intrinsic inverter's delay τ_o is calculated from a 11-stage ring oscillator that has a frequency of 90.9 GHz.

(Hint: Find τ_o from the oscillation frequency as f= 1/(2 X 11 τ_o). Also $C_{load}/C_g = e^{10}$ with e= 2.718.)

4. after wordline (gate voltage) is switched to $2V_{DD}$. (30 points) A dynamic random access memory (DRAM) cell is connected to its bitline (BL) with a total capacitance of 450 fF. The physical dimensions of the DRAM cell's NMOS transistor is shown below. The current driving power I_{DS} is described below. Let us assume that $V_{DD} = 2V$ and $V_{Tn} = 0.5 \text{ V}$, $C_{storage} = 50 \text{ fF}$. Find the time it takes for BL, which was precharged to $\frac{V_{DD}}{2}$ by a precharge pulse while $C_{storage}$ was charged to V_{DD} , to reach the beginning of a steady state value after the wordline (WL) signal which is the gate voltage of NMOS transistor is switched to $2V_{DD}$.

For simple calculation, assume that the parasitic drain capacitance can be neglected, and WL is driven with a high voltage 2 V_{DD} such that the NMOST is in its linear region, i.e.,

$$I_{DS} = k_n' W_n / L_n \frac{1}{1 + \frac{V_{DS}}{E_C L_n}} ((V_{GS} - V_{Tn}) V_{DS} - \frac{1}{2} V_{DS}^2),$$

where $E_C = 10^5$ V/cm, $L_n = 0.05 \,\mu$ m. The average value of $I_{DS} = \frac{1}{2} (I_{DS} \text{ for } V_{DS} = 2\text{V} + I_{DS} \text{ for } V_{DS} = \text{steady state value})$ can be used for calculation of the delay.

(for problem 4 continuation)